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A SET OF SIMPLE, ACCURATE EQUATIONS FOR
CIRCULAR CYLINDRICAL ELASTIC SHELLS*

JAMES G. SIMMONDS

University of Virginia, Charlottesville, Virginia

Abstract—The Sanders’ equations for a circular cylindrical elastic shell of constant thickness are reduced to a
single, simple, fourth order partial differential equation for the complex-valued function W+ i,/(4/D)F, where
W is the midsurface normal deflection, F is a stress function, and 4/D is an elastic constant. Auxiliary equations
expressing the tangential midsurface displacements, stress resultants, stress couples, and Kirchhoff edge forces
in terms of W, F, and surface load integrals are also derived. Approximations are introduced only in the stress—
strain relations, but the resulting errors are shown to be negligible by Koiter’s arguments. Work of previous
writers is reviewed and compared with results of the present paper.

1. INTRODUCTION

CIRCULAR cylindrical elastic shells of constant thickness, because they are technically
important and easy to analyze mathematically, and because they exhibit nearly every
type of behavior found in shells of more complicated geometry, have been extensively
investigated throughout the history of shell theory, especially within the last thirty-five
years. The technical uses of circular cylindrical shells are too well known to be catalogued
here. Their mathematics is simple because of their simple midsurface geometry which
makes their governing equations, in lines of curvature coordinates, of the constant
coefficient type. The many important phenomena displayed by the equations of circular
cylindrical shells, such as boundary layers, the degeneracy of boundary layers near edges
which coincide or nearly coincide with midsurface asymptotic lines, the inadequacy of
equating the two in-plane shear stress resultants, or the limitations of the assumption
that the ““interior” behavior of the shell is the sum of a membrane and an inextensional
bending state, make circular cylindrical shells ideal for testing the adequacy of simplifica-
tions proposed in general shell theory.

In this paper we propose a new set of equations for the linear behavior of elastically
isotropic, constant thickness, circular cylindrical shells subject to edge and surface loads.
The final form of our equations consists of a single, non-homogeneous, fourth order
partial differential equation for a complex-valued displacement-stress function, ¥, to-
gether with auxiliary equations for midsurface displacements, stress resultants, stress
couples, and effective Kirchhoff edge forces. The chief virtue of these new equations, as
compared to others which have been proposed,t is that they are at once concise and
adequate. By adequate, we mean that for any given set boundary conditions, the solution

* This work was supported in part by the National Aeronautics and Space Administration under Grant
NsG-559, and by the Division of Engineering and Applied Physics, Harvard University, Cambridge, Massa-

chusetts.
T With the exception of Novozhilov’s [1], which we discuss in Section 2.
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of the unreduced equations of any of the acceptable first approximation shell theories*
will agree with the solutions of our equations to within errors inherent in the stress—strain
relations of the first approximation theories themselves, namely, to within errors of O(h/a)
where h is the shell thickness and a the midsurface radius.

Our derivation starts from a set of equations for arbitrary shells first proposed by
Sanders [3] in 1959. (An improved derivation of these equations, employing an exact
definition of the modified symmetric shear stress resultant, is given by Budiansky and
Sanders in [4].) Utilizing Koiter’s arguments [2] on the adequacy of, and the errors in,
Love’s uncoupled stress—strain relations, we reduce the Sanders’ equations for a circular
cylindrical shell to two coupled fourth order partial differential equations for the mid-
surface normal deflection W and a stress function F. One of these equations has a non-
homogeneous part involving the surface loads and their integrals. In the reduction, the
static geometric analogy enjoyed by the Sanders’ equations is preserved, which enables
us to combine the two equations for W and F into a single equation for a complex dis-
placement-stress function . We further show that all auxiliary variables, or in some
cases the partial derivatives of these variables, can be expressed in terms of W, F, and
load integrals alone.

The claim that our reduced equations are adequate is based on the fact that we make
approximations only in those parts of the governing equations into which it is necessary
to introduce stress—strain relations—namely, the bending terms in the equilibrium equa-
tions and the extensional strain terms in the compatibility equations—and that the
approximations involve only neglect of terms of the type M/a compared to N or neglect
of terms of the type &/a compared to », where M, N, ¢, and x are, respectively, typical
stress couples, stress resultants, extensional and bending strains. This means, first, that
the errors we introduce into the stress—strain relations are consistent with the errors
already contained in these relations because of the neglect of transverse shearing and
normal stress effects [2, 5]; and second, that for the extreme states of inextensional bending
and pure membrane stress, where it is known that indiscriminate neglect of O(h/a) terms
in the governing equations can lead to errors of O(1) in the final solutions,t our equations
will lead to solutions with errors of only O(h/a).

A summary of our final equations may be found in Section 7.

2. SIGNIFICANT DEVELOPMENTS IN THE HISTORY OF
CIRCULAR CYLINDRICAL SHELLS

To place our results in perspective, we have listed in this section various sets of
reduced equations which, in our opinion, have marked a significant development in the
theory of circular cylindrical shells. No attempt has been made to indicate the method of
derivation of these equations, nor have equations for auxiliary quantities (except in a few
instances) or boundary conditions been listed, although these are certainly as important
as the reduced equations themselves. Also, for simplicity, surface loads terms have been
omitted. Shell geometry and sign conventions for displacements, loads, stress-resultants,
and stress couples are indicated in Fig. 1. Below, and elsewhere in this paper, primes and
dots denote, respectively, differentiation with respect to the nondimensional axial
distance ¢ = az,-and the angular variable 0.

* As defined by Koiter [2].
+ We cite an example of this in Section 2.
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F16. 1. Geometrical and stress conventions.

The first set of cylindrical shell equations general enough to include all possible
states of (linear) deformation, yet simple enough to yield manageable solutions, appear to
have been given by Love in the third edition (1920) of his treatise |6, pp. 574 fI.]. (Also,
[7, pp. 582 ff.].) From the three exact force equilibrium equations expressed in terms of
stress resultants and couples, Love obtained, via a set of stress—strain and strain displace-
ment relations, three simultaneous equations for the midsurface displacements. In our
notation, Love’s equations read

1—v 1+v 1 1—vh2] 1—v[h)?
" - . — - T (= l”:O 2.1
U¢+—2 U¢+—2 [1 P 1+v(a) Ug+vW'+ 7 (a) w (2.1)

1—v 1/{h\? 1 (h)? 1+v 1 [h\3[{3~v
=vh MY oy 2 s M e w P e w) =0 22
2 [1+4(a) JU“[le(a)JU” 7 vt 12<a) 7 7t 22)

h

a)z[V“W—(Z —WUy —U;]1=0 2.3)

1
W+ Uy+vU; +E(
where v is Poisson’s ratio.

It seems curious that, despite the renown of Love’s treatise, most writers credit
Fliigge [8] (1932) with having obtained the first adequate, workable, set of circular
cylindrical shell equations. Certainly the well-known texts of Fliigge [9], Timoshenko and
Woinowsky-Krieger [10], Novozhilov [1], Vlasov {11], and Goldenveiser |12], as well as
the two fundamental papers of Donnell [13, 14], make no specific mention of the above-
cited equations of Love. This oversight is probably explained by the fact that one generally
ascribes to Love a set of equations based on his first-approximation theory [7, p. 531]
which assumes that the two in-plane shear stress resultants, N, and N, are equal.*
However, in his derivation of (2.1) to (2.3), Love distinguished between Ny and N,

* An example of the non-negligible errors this assumption can introduce is given by Reissner [15, 16].
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obtaining an expression for N+ Ny, from the stress—strain relations and an expression
for Ny — Np: from the moment equilibrium equation about the normal.

It should be emphasized that, in general, terms of relative order (h/a)? in (2.1) to (2.3)
cannot be neglected even though terms of relative order (h/a) were neglected in the
derivation of the stress—strain relations used in obtaining (2.1) to (2.3). To cite an example,
if we set U, = () =0, (2.1) to (2.3) reduce, as they should, to the two equations of ring
bending of plane strain theory. If U, is now eliminated between these two equations, the
terms independent of (h/a) identically cancel, and the following equation for W is obtained.

(W +2W + W)y = 0. (2.4)

Had the underlined term in (2.2) been omitted as being of relative order (h/a)?, then the
last term in (2.4), which is non-negligible, would have erroneously been found to be zero.

This importance of apparently negligible terms in (2.1) to (2.3), which is by no means
unique to the Love equations, is closely related to problems of inextensional and partially
inextensional deformation, and is one of the chief drawbacks in taking the midsurface
displacements as the dependent variables. A great advantage of the dual displacement—
stress function approach used to derive the new set of equations proposed in the present
paper is that this small-term problem is completely avoided.

The popular Fliigge equations 8], [9, p. 219],* in our notation, read

Lo L=y 1R\ . Lty LmAi-y N

t—v[ 1fm\?].., 14y, 3—v(h\2
2[1+Z(5)]U9+U9 2U+W 24()W =0 (26)

W Up+vUs+ 112(”) (V4w+ 2w+ WISy - Ug'—ig—vU;;') ~0. (27

Note that the terms in (2.5) to (2.7) proportional to (h/a)* are considerably different
from the corresponding terms in (2.1) to (2.3). In particular, the term of relative order
(h/a)* which must be kept in order to obtain the equations of ring bending—the under-
lined term in (2.7)—now appears in a different place and in a different form than it did
in, Love’s equations.

A significant simplification of Fliigge’s equations was proposed by Donnell [13] in 1933
in conjunction with an analysis of torsional buckling. By omitting a number of terms in
Fliigge’s equations, Donnell was able to obtain the single eighth order equation,

VW 4+ 4pt W = 0 (2.8)

where
4u* = 12(1 —vH(a/h)? 2.9)

is a large parameter which appears constantly throughout the rest of this paper. As
Donnell himself indicated [13], (2.8) is generally valid only if the deformation pattern has
a characteristic circumferential wavelength small compared to the radius a. The fact that
(2.8) does not include the ring bending equation (2.4) as a special case is evidence of this
limitation.

* The original papers of Fliigge [8] and Donnell [13, 14] were concerned primarily with buckling problems,
and their equations contain a number of non-linear terms. Any references in this paper are to the linear parts of
these equations.
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To obtain a more accurate equation than (2.8), Donnell [14] in 1938 started with a
set of shell equations in which he attempted, at the start, ““to include all terms which
might be significant™. He then reduced these equations to a single equation for W without
neglecting any terms along the way and attempted to ascertain which terms in this single
equation could be neglected. The “modified” or “extended” equation obtained in this
fashion was

V8W+2W ...... + W““+4H4W”” — 0 (2.10)

which differs from (2.8) only by the addition of two terms.

Although (2.10) now includes the ring bending equation (2.4) as a special case, Dr.
V. T. Buchwald has pointed out to me that the extended Donnell equation contains
another limitation in that it leads to an incorrect overall moment—displacement relation
for a very long cantilevered circular cylindrical shell acted upon by a net moment at its
free end. Further comment on this point will be found in a footnote at the end of Section S.

In 1958 Morley [17], seeking an equation which retained the accuracy of Fliigge’s
equations* but the simplicity of Donnell’s equation (2.8), proposed the equation

VHVE+ 1) W+4u* W™ = 0. (2.11)

Morley’s equation contains several notable improvements over Donnell’s extended equa-
tion (2.10). First, the necessarily invariant nature of the equation for W is more evident.
Second, (2.11) contains both ring and beam bending as special cases. And third, (2.11)
can be factored into the form

[VA(V2+ 1)+ 2u202/0E2 | [VA(V2 + 1) — i2u202 /082 |W = 0 (2.12)

which, among other things, tremendously simplifies calculation of the roots of the char-
acteristic polynomials which arise from solving (2.11) by separation of variables.

The numerous contributions of Soviet writers to the theory of cylindrical shells is
outlined in chapter III of Novozhilov’s book [1]. We mention here two important, and
relevant equations. According to Novozhilov [1, p. 90], Feinburg in 1936 proposed a
simplified equation of the form

VA — 2097 =0 (2.13)
where W is a complex-valued displacement-stress function defined by
¥ = W+i(2u?/Eah)F. (2.14)

The new symbols appearing in (2.14) are F, the Airy stress function of plane stress theory
and E, Young’s modulus. Equation (2.13) will be recognized as nothing more than the
basic equation of shallow shell theory specialized to a cylinder.t Upon elimination of F,
(2.13) reduces to the simplified Donnell equation (2.8), and thus suffers from the same
limitations as this latter equation. Nevertheless, there are good reasons why it is preferable
to work with Feinburg’s equation instead of Donnell’s. First, (2.13) emphasizes the basic
duality among the field equations of shell theory known as the static-geometric analogy
(of which more shall be said later). Second, as a consequence of the static-geometric
analogy, the order of (2.13) is, effectively, half that of (2.8). This is especially useful in
simplifying the algebra in those cases where the boundary conditions can be expressed

* By this time, Fliigge’s equations had been reduced to a single equation for W,
1 Of course, at the time, Marguerre’s general theory of shallow shells [18] had not appeared.
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in terms of W and F alone (e.g. see [19]). And third, by working with W and F (ie. ¥)
instead of W alone, a number of auxiliary formulas are greatly simplified. For example,
when using the simplified Donnell equations, the only way to express the axial stress
resultant N, in terms of W alone is to write

aV*N: = —(1—v})ERW"" (2.15)
whereas, using the Feinburg equations, one has, simply,
a’N,=F". (2.16)

In 1946 Novozhilov [1, p. 184] proposed an equation for cylindrical shells of arbitrary
cross-section which, specialized to circular cross sections, reads in our notation

VAT + T —2u*T" =0 (2.17)
where
T = N+ Ny —i(Eha/2p®) (¢ + %) (2.18)

and %, and x4 are bending strains. Note that, aside from the different dependent variable,
(2.17) differs in form from (2.13) only by the addition bf a single term, yet because of this
term, (2.17) is applicable to both ring and beam bending, though (2.13) is not.

Despite its compactness and comprehensiveness, Novozhilov’s equation has not
received much attention in the Western literature. One reason is the relatively recent
translation date of his book (1959). Another may be that, in deriving (2.17), Novozhilov
begins by specializing to cylindrical shells, a set of equilibrium-compatibility equations
for arbitrary shells [1, equations (16.10)] into which he has introduced the assumption
that the in-plane shear stress resultants are equal [1, equation (16.4)]. However, it turns
out that, for circular cylindrical shells at least, this assumption is unnecessary, if, in
equations (40.3) of [1], one takes

S = No:—i(Eha/2p* g (2.19)

Finally, we mention two recent papers by Lukasiewicz {20] and Ichino and Takahashi
[21], both of which employ as the basic dependent variables W and an Airy-type stress
function F. In [20], Lukasiewicz has attempted to reduce the equations for arbitrary
shells to two coupled equations for W and F. For circular cylindrical shells, his equations
reduce to

D(V2+1*W—aF" =0 (2.20)
AVAF+aW” =0 (2.21)
where
Eh? 1
_ — A= — 2.22
—y 2nd Eh 2.22)

Upon climination of F, (2.20) and (2.21) reduce to Morley’s equation (2.11). While one
might criticize the lack of symmetry between (2.20) and (2.21), the most important short-
coming in Lukasiewicz’s results are his auxiliary equations, which can easily be shown
not to be universally applicable. Two of the objectionable ones are

Neg = Ng; [20, equation (3.1)5] (2.23)
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and
Mg = D(1 -v)W" [20, equations (3.1)¢ and (5.1);]. (2.24)

Reissner’s analysis of the split tube under torsion [15, 16] shows that (2.23) is unacceptable,
and it is not difficult to construct another example to show that (2.24) is generally incorrect.

More satisfactory results have been obtained by Ichino and Takahashi [21]. Starting
with the exact equilibrium equations and the approximate Fliigge stress—displacement
relations, these authors arrived at two coupled equations for W and F which they were
able to combine into

VAV + )W +%(1 — VY Y ) — 2uPY = 0 (2.25)

where W is given by (2.14). Furthermore, in their auxiliary equations, they distinguished
between N, and Ny and used a more accurate equation for M,.
The new reduced equation for circular cylindrical shells proposed in this paper is

VA 4+ AV - 2p29 =0 (2.26)

where W is given by (2.14) and 4 can be any arbitrary 0(1) constant. Thus our equation
resembles an amalgam of the results of Feinburg, Novozhilov, Lukasiewicz, and Ichino
and Takahashi: our complex displacement—stress function ¥ is the same as Feinburg’s;
the form of (2.26), with 4 = 0, is identical to Novozhilov’s (2.17); and we have attempted,
as have Lukasiewicz, and Ichino and Takahashi, to extend the use of the basic variables
of shallow shell theory, W and F, to non-shallow circular cylindrical shells.

A brief comparison of our equations (2.26) with Novozhilov’s (2.17) and Ichino and
Takahashi’s (2.25) is of interest. The great advantage of Novozhilov’s equation is that it
easily generalizes to arbitrary cylindrical shells while ours does not.* On the other hand
our dependent variable ¥, being essentially a twice integrated form of Novozhilov’s
dependent variable T, seems more convenient for the application of boundary conditions.
Moreover, the form of our equation provides a ready comparison with the standard form
of the shallow cylindrical shell equation, (2.13).

Compared with Ichino and Takahashi’s equation (2.25), our equation (2.26) is con-
siderably simpler. If our reduction is correct, this implies that the middle group of terms
in (2.25) is negligible, as indeed an application of the arguments used in Section 5 of the
present paper shows them to be. Also, our auxiliary equations for the remaining dependent
variables (which are listed in Section 7) are, in a number of instances, much simpler than
the corresponding ones given in [21]. Last, we should point out that use of the modified,
symmetric stress resultants of Budiansky and Sanders [4] permits us, without any loss of
accuracy, to work with only six stress resultants and couples instead of the eight needed
with the Fliigge equations used by Ichino and Takahashi.

3. THE SANDERS’ EQUATIONS FOR A CIRCULAR CYLINDRICAL SHELL

Specialized to a circular cylindrical shell, the field equations of the Sanders’ theory
[3, 4], in the notation of Fig. 1, consist of three exact reduced force equilibrium equations
* In fact, some unpublished calculations indicate that only the equations of shallow, (nearly) spherical, and

(nearly) cylindrical shells can be reduced, without loss of generality, to two coupled fourth order equations for
the normal deflection and a stress function.
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AN+ S)—4T +a?p, = 0 (3.1a)
aAS' +Ny)+3T +My+a’py =0 (3.1b)
{+2T"+My —aNy+a’p =0, (3.1¢)
six exact strain-displacement relations
atng = —-W", a*ug = —W '+ U, (3.2a,b)
@1 = W' +3U,— LU, (3.20)
agy = Uy, agg = Ug+ W (3.3a,b)
ay = {Up+ U)), (3.3¢)

plus a set of approximate stress—strain relations which, for an elastically isotropic shell,
can be taken in the form*

g = A(N;—VvNy), Mgy = D(xg+va,) (3.4a, b)
89 = A(Nﬂ - ng), M{ = D(%f: + v%a) (3.40, d)
y = A(14v)S, T = D(1 —v)r, (3.4e, 1)

where 4 and D are defined by (2.22).

In (3.1) and (3.4), S and T are, respectively, a modified shear stress resultant and a
modified twisting stress couple, defined by Budiansky and Sanders [4] in terms of the
conventional unsymmetric stress resultants and couples as follows:

1 1
1
T = 3 (Mgt M) (3.6)

For a complete system, the above equations must be supplemented by boundary
conditions. These may be read off from the expression for the work of the edge loads,
allg. Assume for simplicity that we are dealing with a panel of nondimensional length
¢ = | and angular width @ = «. Then, with the displacements satisfying the Kirchhoff
hypothesis, we have

1
Mg = jO[NoUo+SoU5+R6W+M9‘p"]"=° d

+jO[N¢U§+s§U(,+R¢W+M<<p¢]¢=,de

’ ) (3.7)
+ jl [N9U9+...]6:ad§+_|.a [NUc+...Js=0d0
+2TW]_ o+ .- +[2TWe
where =0 o=
pr=—Wla,  @g=—(W —=Upa (3.8)

* When we wish to distinguish between (3.4a, ¢, ¢) and (3.4b, d, f), we shall refer to the former as the force—
extension relations and the latter as the moment—curvature relations.
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are the edge rotations and
Se= Ng+Mgla,  Sy= Ny (3.9a, b)
R = Q:+My/a, Ry = Qo+ My /a (3.10a, b)

are the effective Kirchhoff edge stress resultants. In terms of the Budiansky—Sanders
variables, (3.9) and (3.10) can be expressed exactly as

S, = S+3T/a, S, = S—1T/a (3.11a,b)
aRy = M+2T,  aRy = M,+2T. (3.12a, b)

4. COMPATIBILITY CONDITIONS, THE STATIC-GEOMETRIC ANALOGY,
AND STRESS FUNCTIONS

While the equations of the preceding section are a complete set, a more symmetric
formulation is possible utilizing the Goldenveizer—Lur’e [12] static-geometric analogy.*
The static-geometric analogy permits the governing equations to be stated in a concise
elegant form, and in many cases (but not all!), the order of these equations is thereby
halved. In our reduction of the Sanders’ equations for the circular cylindrical shell, the
static-geometric analogy shall be exploited fully.

Since the six extensional and bending strains are expressable in terms of the three
midsurface displacement components, they cannot be specified independently, but must
satisfy compatibility conditions. From (3.2) and (3.3) these follow as

a(—xp+1)+3y =0 (4.1a)
alt' —xz))—3y' +e;= 0 (4.1b)
g9 — 2y +e; +ax; = 0. 4.1¢)

If we set p = p, = p =0 and make the following correspondence of variables (the
static-analogy),
N —x, Ngeor —u,, Set (4.2a,b,¢)

8¢HMG, EGHMC’ bR and _T (4.3a,b,C)

then (3.1) and (4.1) become identical.

When the strains are expressed in terms of the displacements, equations (4.1) are
identically satisfied. Let particular solutions of (3.1) be given by the surface load integrals
of membrane theory. It then follows from the static-geometric analogy that if we introduce
the following correspondence between displacements and stress functions

We F, U:—H,, Uge— Hy, (4.4a,b,¢)

the reduced force equilibrium equations will be identically satisfied if the stress resultants
and couples are expressed as follows.

@N, = F —Hy+a [ [ (" +pi) de —p; | de (4.52)
a’Ny = F'+a’p (4.5b)

* Not all of the linear shell equations proposed in the literature admit a static-geometric analogy. The
general form of those which do is given in [4].
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a?S = F"+3H,—3H,~&®| (o' +py) dé (4.50)
aM, = Hy+F,  aM, = H; (4.6a, b)
aT = —YHj+Hy). (4.6¢)

Stress function representations for the effective Kirchhoff edge stress resultants S;, Sy,
R, and R, are also of interest. These follow from (3.11), (3.12), (4.5) and (4.6) as

a’S; = —(F’+H¢)'—a3f (p"+pe) d¢ (4.72)
a2Sy = —(F —He —a*| (p'+p) d& (4.7b)
a’R, = F'—Hy, a*Ry= —Hj. (4.8a, b)

A further duality among the field equations is exhibited by the stress—strain relations.
Observe that if we introduce the correspondence of elastic constants

Ae —D, Ve —vy (4.9a, b)
and use (4.2) and (4.3), then the pairs (3.4a, b), (3.4c, d), and (3.4¢, f) become identical.

5. REDUCTION OF THE SANDERS’ FIELD EQUATIONS

We now proceed, with the aid of certain arguments of Koiter [2], to reduce the Sanders’
field equations to two coupled fourth order partial differential equations for the normal
midsurface deflection W, and the stress function F. Because of the static-geometric analogy,
we shall be able to combine these two equations into a single equation for a complex
displacement-stress function W. The reduction is straightforward, and analogous to the
one used in shallow shell theory.

We begin with the reduced normal force equilibrium equation,

M +2T" +Mj —aN,+a*p = 0. (5.1)

As noted before, this equation becomes identically satisfied when the stress resultants and
couples are expressed in terms of stress functions and load integrals. If instead, we express
the stress couples in terms of displacements via the moment—curvature relations (3.4b, d, f)
and strain—displacement relations (3.2), but leave Ny in terms of F and p, then (5.1) can be
written

D[V*W +f(Ug, Up, W)l +aF" =0 (5.2)
where
SUg, U, W) = 31 —WUE =33 —n)Uy = Uy (5.3)

By use of the strain—displacement relations (3.2a) and (3.3), and the compatibility equation
(4.1¢), we can write

fUg, Ug, W) = W™ —a[(3—=v)y" —(2—v)ey +&5]. (5.4)

The following, more general form of f is obtained if (4.1¢) is multiplied by an arbitrary
constant — 4 and added to (5.4):

f(Ue, Ug, W) = W4 AW —aldeg + (3= 24— vy —(2—A—v)ex +e5 . (5.5)
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We now come to the crucial argument in our reduction. We observe that had we started
with the set of stress—strain relations

M; = D[x:+ vieg— Aeo/a] (5.6a)
My = D[xg+ v+ (2 — A —v)es/a—e4/al (5.6b)
T = D[(1 -v)t —1(3 =24 —v)y/da], (5.6¢)

instead of (3.4b, d, g), then the underlined terms in (5.5) would have been identically zero.
Now the stress-strain relations in any first approximation shell theory including Sanders’
are obtained from the stress—strain relations (or the strain energy function) of three-
dimensional elasticity by invoking the Kirchhoff hypothesis or some equivalent, such as
the assumption of a state of three-dimensional plane stress. But Koiter [2] has shown that
the errors one introduces into the stress—strain relations of shell theory by the adoption of
the Kirchhoff hypothesis are of the same order of magnitude as those one introduces by
replacing a bending strain term of the type » by a term of the type x+ O(e/a). Thus,
assuming A to be an arbitrary constant of O(1), we conclude that it is consistent to neglect
the underlined terms in (5.5) and (5.6),.and therefore to take (5.2) in the simplified form

D(V*W + W + W'Y +aF" = 0. (5.7)

To obtain a second equation relating W and F, we give an analogous treatment to the
third compatibility equation,

g9 —2y" +e; +axg = 0. (5.8)

Expressing the extensional strains in terms of stress functions and load integrals via
(3.4a, c, ¢) and (4.5), and setting azug = — W", we find that (5.8) reduces to

A[V*F+f(Hy, Hy, F)] —aW" = —a’AP(py, py, p) (5.9)

where

P(p.po.p) = V* ([[p e de)+vpi— [py de+Q+vpp+ [[pi dede (510

and where f is precisely the same function (but with different arguments and v replaced
by —v) as defined by (5.5).

By virtue of the static-geometric analogy, it follows that Koiter’s arguments also
imply that the errors we introduce into the force—extension relations (3.4a, c, e} by replac-
ing terms of the type N by terms of the type N + O(M/a) are of the same order of magnitude
as the errors already contained in these equations as a consequence of the Kirchhoff
hypothesis. Thus we conclude that it is consistent to set

f(H, Hy, F) = F"+AF", (5.11)*
whereupon (5.9) reduces to

A(VAF+F +iF")—aW" = —a’AP(p, py, p)- (5.12)

* We could choose the arbitrary constant in (S.11) different from the constant A in (5.5). For symmetry,
however, we do not.
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Equations (5.7) and (5.12) are the two coupled fourth order equations we set out to
derive. They may be expressed in a more concise form by dividing (5.7) by D and then
adding to it (5.12) multiplied by i(AD)~ 2. This yields the single equation

VA + ¥+ AW —i2p?Y" = —i2ua’ AP(pe, P, ) (5.13)
where
Y = W+i/(A/D)F (5.14)
and
2u% = a/\/(AD) = J[12(1 —v*))a/h. (5.15)

A number of remarks are now in order. First, we reiterate that the only place we have
introduced approximations is in the stress—strain relations, and that these approximations
have been consistent with the approximations inherent in the stress—strain relations of any
first approximation shell theory.

Second, even though it is consistent to set N & N+ O(M/a) and » =~ x+ O(g/a) in the
stress—strain relations, this does not necessarily imply that N > O(M/a) or » > O(¢/a).
For example, if a state of inextensional bending occurs (such as ring bending), we have,
generally, N = O(M/a); consequently, the uncoupled force—extension relations (3.4a, ¢, €)
cease to have any meaning. But this makes sense, for it shows that it is not inconsistent
to have zero extensional strains but non-zero stress resultants. Incidentally, the fact that
the coefficient of A4 in (5.9) contains relative errors of O(1) for inextensional bending is
inconsequential, since, necessarily, inextensional bending occurs only if the W-term on
the left-hand side of (5.9) dominates.

Third, the way in which we have introduced the load integrals is not unique. An
alternate way is to define a new stress function

Fy = F+a*[[ (p+ [ppdo) dzde. (5.16)

Then (5.7) and (5.12) read

D(V*W + W + AW ")+ aF), = a4(p+ j Do do) (5.17)

= @4 | [py de+ [ 05 d0—vipe+p)+] | o +pdede+a(p+ ] poa)].  (s.18)

In this form, the reduced equations resemble the equations of shallow shell theory, with
the exception of the terms with a dashed underline.

Fourth, our freedom in choosing the constant 4 is useful both in simplifying algebra
and in comparing our equations with those of other writers. For example, if for a cylin-
drical shell complete in the §-direction we assume a product solution of the form

P 0) = ePcosnd  n=01,2,... (5.19)

then the choice 4 = 0 gives the simplest polynomial for p except for n = 1, in which case
the choice 1 = 2 leads to the simplest polynomial.
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To compare (5.13) to other reduced equations which have been proposed, we first set
A = 0. The homogeneous part of (5.13) in this case is identical in form to an equation pro-
posed by Novozhilov. However, as noted in Section 2, the dependent variable in Novo-
zhilov’s equation is

T = N+ Ny—i(Eha/2u*) (5 + ).

We now set 4 = 1, write (5.13) as two real equations, and eliminate F between them,
obtaining thereby

V4(V2 + 1)2W +4ﬂ4W””
= (a*/D)[V*p—pi +2p5 +ps +v(pe+py)’]  (5.20)

which is the equation proposed by Morley [17]* on an admittedly ad hoc basis.

Finally, let us see if it is possible to reduce our equations to the extended Donnell
equation, (2.10). Since preserving the static-geometric analogy is of no concern here, we
can obtain more flexibility by taking the arbitrary O(1) constants in (5.7) and (5.13) to be
different. Calling the constant in (5.12) 4, eliminating F between (5.7) and (5.12), and,
for simplicity, setting P = 0, we obtain the equation

VSW‘+2W ...... +W....+4u4W,,,,
FOA IV 2L+ A+ AW+ (b A+ AW (5.21)
FAHAIW + AW =0

from which it is clear that no choice of A and A, will yield the extended Donnell equation
(2.10).%

* Morley assumed p, = p, = 0.

1 Equation (5.21) may be used to illustrate why the extended Donnell equation (2.10) leads to an incorrect

overall moment—displacement relationship for a very long cantilevered circular cylindrical shell acted upon at
its free end by a net moment M. Briefly, by taking the normal deflection in the form

W(S, 8) = w(&) cos 0

which is appropriate for such a loading, one may show that, to within terms that are uniformly negligible for
all &, (5.21), plus an appropriate set of boundary conditions, leads to the solution

_ M
Y = YmaEh

whereas (2.10), with the same boundary conditions, leads to

(A)

Myt
sh(&/p?) - 1]. B
- [cosh(&/u™) - 1] (B)
In particular (A) gives for the tip deflection A of"a shell of length L
ML?
A= ., I'=na’h
2E1 ™

which agrees with the well-known result of elementary beam theory [22, p. 182]. On the other hand (B) gives

A—ML2 1+1 L 2+ .
T 2EI 12\ay?

whijch diverges from the elementary beam theory result without limit as L increases without limit.
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6. SIMPLIFIED EQUATIONS FOR DERIVATIVES OF TANGENTIAL
DISPLACEMENTS AND STRESS FUNCTIONS

In this section we develop simplified expressions for Uy, Uy, Uy, Uy and their ana-
logues, H, etc., in terms of W, F, and load integrals. It turns out that these expressions
for the derivatives of U,, Uy, H: and H, are all that are needed to express any displacement
and/or stress boundary conditions in terms of W and F. Thus (5.13) may be solved for ¥
before any auxiliary partial differential equations for U, Uy, H,, or H, are solved.

To obtain the desired expression for U, we begin with (3.3a) and (3.4a), combined to
read

Ui = aA(N,—vN,). (6.1)

Since (6.1) is a stress—strain relation, we may, according to Koiter’s arguments, add
terms of the type M/a to the N’s.* In particular, we may replace (6.1) by

U’{ = aA(N¢ +Mg[a — VNQ). (6.2)
From (4.5a, b) and (4.62), it then follows that

Ut = (4/a)(F + F—vF")+a*A] [ [ [0+ i) d& - p] d& — vp}. 6.3)

By the same arguments, one gets from (3.3b), (3.4¢c), (4.5a, b) and (4.6a),
Uy= -W+ag,
= —W+aA(Ng—vN,)
= —W+aA[Ny— V(N +Ma)|

= —WHAaF - F +Pl+aalp—v | [0 +ppae—plag 64
For U, we get, successively,
Uy = 2ay — U, by (3.3¢)
= W’'+2ay —aep, by (3.3b)
= W' —aA[Ny—vN;—2(1+v)S], by (3.4c,e)

= W' —ad[Ny— Ny —21+v)(S—T/a)]
B 6.5)
= W —ad[No+ Q2+ N =201 + a2 4p;, by (3.1a)

W' —aA[Ny+ Q2+ v)(Ny+ M,/a)] = 2(1 +v)a? Ap;

i

W' ~(A/a)[F"+ Q2+ v)(F +F))

— @ Alp +vpe+ 2+ [ +p) de],
by (4.5b) and (6.3). A similar set of substitutions and approximations yields as the final
expression for Uy,

* Addition of terms of this type 1o a stress-strain relation will be indicated by an underline.
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Uy = ~(A/a)[Q+WF"'+F +F)
—aA{@+vp + 20+ vpo+] | [ +pi) d&—pc] e}, (6.6)

It is clear that (6.3) and (6.6) may be used to convert displacement and rotation boun-
dary conditions along an edge 6 = constant into boundary conditions involving linear
combinations of W, F, and their derivatives. The same is true of (6.4) and (6.5) regarding
the edge £ = constant.

By the static-geometric analogy, it follows immediately that

Hy = —(D/a)(W +W +wW") (6.7)
H, = —F —(Dja)[W"+ W +W)] (6.8)
Hy = F' +(D/a)[W'+Q2—-W)(W +W)) (6.9)
Hy = (Dja)[Q— W'+ W +W]. (6.10)

An alternate set of equations which in some instances may prove more convenient
for solving for U,, Uy, H, and H,, and which follow immediately from (6.3) to (6.10), are

V2U, = [W—(1+)(4/a)(V’F + F)Y —(L+9)a*A[p' +pet [ (7 +P)) & @1
V2Uy = —[W +(1+)(4/a)(V*F + F)Y

—(1+v)a2A{p'+2pe+j H(p“+p;,) dg—p,;]' dc} (6.12)
V2H, = [F+(1—v)(D/a)(V2W + W)] (6.13)
V2H, = —[F—(1—v)(D/a)(V*W + W)]. (6.14)

When (6.3) to (6.10) are substituted into (4.5) to (4.8), equations for stress resultants
and couples in terms of W, F, and load integrals are obtained without the need of any
further approximations. These equations are listed in the following section. In order to
express S, Sg, S, and T in terms of W, F, and load integrals alone, it has been necessary to
take their first partial derivatives.

7. SUMMARY OF EQUATIONS

Below, we summarize the simplified equations derived in Sections 5 and 6. An “approxi-
mately equals” sign, =, has been used in those equations which, because they involve
stress—strain relations, are not exact.

Basic equation
VAR N D N P
~ — i A[V ([ [pdg ag) +vpi— [ pi dE+@+vpet | [y de ag] (7.1)
¥ = WiJ(4/DF, 2% = aj\(AD) = J[12(1 —v})]a/h (7.2a, b)

4 = arbitrary, O(1) constant.
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Auxiliary equations
Stress resultants
a’N, = F"+F—aMé+a3HJ(p"+p;,)dé—p¢] dé¢
~ P+ F+ 0w W +W)l+a* [ [ [0 +p) de—p. [de  (1.3)
a*Ny = F'+a’p (7.4)
a*S' = —{F'—(Dja)[W + W+iB =)W'} —a®(p + pe) (7.5a)
a’S ~ —{F' +F+(D/a)[W"'+H1+v) (W + W)]}’—a3J‘(p"+p;,) dé. (7.5b)

4

2

Stress couples

a*M; =~ —D[W" +yW +W)] (7.6)
@AMy~ —DW +W+vW") (7.7)
a’T' '~ -=D1-vWW",  a*T ~ —D(1—v)(W +W). (7.8a,b)

Effective Kirchhoff edge stress resultants
@S, = —(F" +F) +a*R;—a®[ (p" + py) d&

~ —{F +F+(Dja)[W +Q2—v)(W + W)]}’—aéj(p"+p;,) d¢ (1.9)

a’Sy = —F" —a’Ry—a*(p +py)
~ —{F' —(Dja)[W + W+Q W'\ —a*(p +p) (7.10)
@R, ~ —D[W"+Q2~v)(W +W)[ (7.11)
@R, ~ —D[W +W+Q2-nW"]. (7.12)

Tangential displacements
U~ (4/a)F +F—vE )+ A [[ {0+ py de—pe] d& —vp} (7.13a)
U; & W —(4/a)[F" +Q+V)(F +F)} — aAlp' + vpe+(2+) j (p"+py)dé]  (7.13b)
U, ~ —W+(A/a)[F”—v(F"+F)]+a2A{p—vJ. [ j(p"+po) df—p;] e} (7.14a)
Ug = —(A/a)[2+VF"'+F +F]
—a24{@+vp+ 201+ vpe+[ [ {0+ 5 df—pé}dé}. (7.14b)
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Résumé—Les équations de Sanders d’une enveloppe élastique circulaire cylindrique d’une épaisseur constante
sont réduites en une simple, unique équation differentielle partielle de quatriéme ordre pour la fonction de valeur
complexe W+i,/(A/D)F, alors que W est la déviation normale de surface moyenne, F est une fonction de
tension, et A/D est une constante élastique. Des équations auxiliaires exprimant les déplacements de la surface
moyenne tangentielle, les résultantes de tension, les couples de tension et les forces tranchante de Kirchhoff aux
termes W, F, et les charges intégrales de surface sont également dérivées. Des approximations sont également
introduites uniquement dans les relations contrainte-tension, mais les erreurs en résultant sont constatées
négligeables par les arguments de Koiter. Le travail d’autres écrivains est pass¢ en revue et comparé avec les
résultats de la présente étude.

Zusammenfassung—Die Sanders’ Gleichungen fiir eine kriesformige zylindrische elastische Schale von bestén-
diger Dicke sind reduziert zu einer einzelnen einfachen partieller Differentialgleichung vierter Ordnung fiir
die komplexen Funktionen W+i\/ (4/D)F, wo W ist die normale Durchbiegung, F ist eine Beanspruchungs
Funktion und 4/D ist ein elastischer Festwert. Hilfsgleichungen, welche die tangentialen Verschiebungen,
Resultanten, Beanspruchungs momente und Kirchhoffsche Randkrifte durche W, F und Oberflichenbelastungs
Integrale ausdriicken werden ebenfalls abgeleitet. Anndherungen sind nur in den Spannungs—Beanspruchpngs
Beziehungen eingefiihrt, aber die sich ergebenden Abweichungen zeigen sich als geringfiigig nach K01Fer’s
Beweisen. Arbeiten von fritheren Verfassern werden besprochen und mit den Ergebnissen der gegenwirtigen
Abhandlung verglichen.

AGcTpakT—VYpapuenus Cannepca AiS KPYIJIOH HUIMHAPHYECKON ynpyroit oGONIOMKH € nOCTOAHHOH
TOJIILIMHOMA COKPALIEHBI A0 OAHHOYHOTO NPOCTOro AuddepeHIInanIbHOTO YPABHEHHS B YACTHBIX NPOX3BOAHBIX
Y4eTBEPTOro NOPAAKA I CIIOXKHO-3HaYHOR byHkunu W +i+/(A/D)F, rae W npeactaisieT w3 cebs CpeauHHO~
MOBEPXHOCTHOE HOPMAJILHOE OTKJIOHEHHWe, F npeAcTasnseT QYHKHHIO HANPsKeHHA B A/D—TOCTOAHHYIO
yOPYrocTH. BCIOMOTaTebHble YPaBHEHHMs, BbIPAXAIOLWIME TAHICHUHANIBHEIE CPEAHE-NOBEPXHOCTHLIE
CMEIIIeHUA, PABHOACHCTBYIOIHE HANPSXKEHHA, NAPhl CHII HANPSHKEHHA M CHIIBI kpas Kupuxoda B BeIpa-
KeHUAX W, F, ¥ HATETPANBI IOBEPXHOCTH HArpyOKH TakXe BBIBOOATCA TEOpETHYECKHM TyTéMm. ITpubn-
HMKEHHA BBOAATCA TOJLKO B OTHOIIEHMAX HanpskeHuA-gedbopMauuu, HO Pe3yIbTHPYIOUIHe HOrpem-
HOCTHM noka3zaTenscTBami KoiiTepa moka3aHsl, K8k He3HauuTeNnbHble. PaccMaTpusaercs paboTta mpeani-
NYIIMX aBTOPOB M CPaBHHBAETCA ¢ Pe3yJILTATAMH HACTOALUEH CTaTBH.



